\(\int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx\) [75]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 123 \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\frac {(a-b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 \sqrt {a} f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f} \]

[Out]

1/2*(a-b)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f/a^(1/2)+arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*ta
n(f*x+e)^2)^(1/2))*b^(1/2)/f-1/2*cos(f*x+e)*sin(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/f

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {4217, 478, 537, 223, 212, 385, 209} \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\frac {(a-b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 \sqrt {a} f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{f}-\frac {\sin (e+f x) \cos (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 f} \]

[In]

Int[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^2,x]

[Out]

((a - b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*Sqrt[a]*f) + (Sqrt[b]*ArcTanh[(Sqrt
[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f - (Cos[e + f*x]*Sin[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^
2])/(2*f)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*n*(p + 1))), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 4217

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1
 + ff^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x^2 \sqrt {a+b+b x^2}}{\left (1+x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{f} \\ & = -\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f}+\frac {\text {Subst}\left (\int \frac {a+b+2 b x^2}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f} \\ & = -\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f}+\frac {(a-b) \text {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}+\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = -\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f}+\frac {(a-b) \text {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {b \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f} \\ & = \frac {(a-b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 \sqrt {a} f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.29 (sec) , antiderivative size = 432, normalized size of antiderivative = 3.51 \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\frac {e^{-i (e+f x)} \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \cos (e+f x) \left (i \left (-1+e^{2 i (e+f x)}\right )+\frac {2 e^{2 i (e+f x)} \left (2 a f x-2 b f x-i (a-b) \log \left (a+2 b+a e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )+i (a-b) \log \left (a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-4 \sqrt {a} \sqrt {b} \log \left (\frac {\left (-\sqrt {b} \left (-1+e^{2 i (e+f x)}\right )+i \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right ) f}{2 b \left (1+e^{2 i (e+f x)}\right )}\right )\right )}{\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right ) \sqrt {a+b \sec ^2(e+f x)}}{4 \sqrt {2} f \sqrt {a+2 b+a \cos (2 e+2 f x)}} \]

[In]

Integrate[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^2,x]

[Out]

(Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Cos[e + f*x]*(I*(-1 + E^((2*I)*(e + f*x))) +
(2*E^((2*I)*(e + f*x))*(2*a*f*x - 2*b*f*x - I*(a - b)*Log[a + 2*b + a*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E
^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] + I*(a - b)*Log[a + a*E^((2*I)*(e + f*x)) + 2*b*E^((2*I)*
(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - 4*Sqrt[a]*Sqrt[b]*Log[((
-(Sqrt[b]*(-1 + E^((2*I)*(e + f*x)))) + I*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])*f)/(2
*b*(1 + E^((2*I)*(e + f*x))))]))/(Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]))*Sqrt
[a + b*Sec[e + f*x]^2])/(4*Sqrt[2]*E^(I*(e + f*x))*f*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(515\) vs. \(2(105)=210\).

Time = 7.38 (sec) , antiderivative size = 516, normalized size of antiderivative = 4.20

method result size
default \(-\frac {\left (\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {-a}\, \cos \left (f x +e \right ) \sin \left (f x +e \right )+\sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sin \left (f x +e \right )-\sqrt {b}\, \ln \left (\frac {4 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {b}\, \cos \left (f x +e \right )-4 \sin \left (f x +e \right ) a +4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 a -4 b}{\sin \left (f x +e \right )+1}\right ) \sqrt {-a}-\sqrt {b}\, \ln \left (-\frac {4 \left (\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {b}\, \cos \left (f x +e \right )+\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sin \left (f x +e \right ) a +a +b \right )}{\sin \left (f x +e \right )-1}\right ) \sqrt {-a}-\ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a +\ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) b \right ) \sqrt {a +b \sec \left (f x +e \right )^{2}}\, \cos \left (f x +e \right )}{2 f \sqrt {-a}\, \left (1+\cos \left (f x +e \right )\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}}\) \(516\)

[In]

int(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/f/(-a)^(1/2)*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(-a)^(1/2)*cos(f*x+e)*sin(f*x+e)+(-a)^(1/2)*((b
+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*sin(f*x+e)-b^(1/2)*ln(4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*
b^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*(-a)^
(1/2)-b^(1/2)*ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2
)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*(-a)^(1/2)-ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+
cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a+ln(
4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*
x+e))^2)^(1/2)-4*sin(f*x+e)*a)*b)*(a+b*sec(f*x+e)^2)^(1/2)*cos(f*x+e)/(1+cos(f*x+e))/((b+a*cos(f*x+e)^2)/(1+co
s(f*x+e))^2)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 278 vs. \(2 (105) = 210\).

Time = 0.61 (sec) , antiderivative size = 1417, normalized size of antiderivative = 11.52 \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\text {Too large to display} \]

[In]

integrate(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/16*(8*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - sqrt(-a)*(a - b)*log(128*a
^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4
- 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*c
os(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2
*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - 4*a*sqr
t(b)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*
cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4))/(a*f)
, -1/16*(8*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - 8*a*sqrt(-b)*arctan(-1/2*
((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x
 + e)^2 + b^2)*sin(f*x + e))) - sqrt(-a)*(a - b)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6
 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 -
 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*
(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*c
os(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)))/(a*f), -1/8*(4*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)
*cos(f*x + e)*sin(f*x + e) + (a - b)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 +
 (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4
- a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) - 2*a*sqrt(b)*log(((a^2 - 6*a*b + b^2)*cos(f*
x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*
x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4))/(a*f), -1/8*(4*a*sqrt((a*cos(f*x + e)^2 +
 b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) + (a - b)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*
b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*
a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) - 4*a*sqrt(-b)*arctan(-1/2
*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*
x + e)^2 + b^2)*sin(f*x + e))))/(a*f)]

Sympy [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \sin ^{2}{\left (e + f x \right )}\, dx \]

[In]

integrate(sin(f*x+e)**2*(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x)**2)*sin(e + f*x)**2, x)

Maxima [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*sin(f*x + e)^2, x)

Giac [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*sin(f*x + e)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\int {\sin \left (e+f\,x\right )}^2\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}} \,d x \]

[In]

int(sin(e + f*x)^2*(a + b/cos(e + f*x)^2)^(1/2),x)

[Out]

int(sin(e + f*x)^2*(a + b/cos(e + f*x)^2)^(1/2), x)